Philosophiae Naturalis Principia Mathematica

Isaac Newton

ISBN: 9781888009231

Release: 01/1970

Philosophiae Naturalis Principia Mathematica by Isaac Newton

Part of the contents originally planned for the first book was divided out into a second book, which largely concerns motion through resisting mediums. Just as Newton examined consequences of different conceivable laws of attraction in Book 1, here he examines different conceivable laws of resistance; thus Section 1 discusses resistance in direct proportion to velocity, and Section 2 goes on to examine the implications of resistance in proportion to the square of velocity. Book 2 also discusses (in Section 5) hydrostatics and the properties of compressible fluids; Newton also derives Boyle's law. The effects of air resistance on pendulums are studied in Section 6, along with Newton's account of experiments that he carried out, to try to find out some characteristics of air resistance in reality by observing the motions of pendulums under different conditions. Newton compares the resistance offered by a medium against motions of globes with different properties (material, weight, size). In Section 8, he derives rules to determine the speed of waves in fluids and relates them to the density and condensation (Proposition 48; this would become very important in acoustics). He assumes that these rules apply equally to light and sound and estimates that the speed of sound is around 1088 feet per second and can increase depending on the amount of water in air. Less of Book 2 has stood the test of time than of Books 1 and 3, and it has been said that Book 2 was largely written to refute a theory of Descartes which had some wide acceptance before Newton's work (and for some time after). According to Descartes's Cartesian theory of vortices, planetary motions were produced by the whirling of fluid vortices that filled interplanetary space and carried the planets along with them. Newton wrote at the end of Book 2 his conclusion that the hypothesis of vortices was completely at odds with the astronomical phenomena, and served not so much to explain as to confuse them.

Book 3, subtitled De mundi systemate (On the system of the world), is an exposition of many consequences of universal gravitation, especially its consequences for astronomy. It builds upon the propositions of the previous books, and applies them with further specificity than in Book 1 to the motions observed in the Solar System. Here (introduced by Proposition 22, and continuing in Propositions 25–35) are developed several of the features and irregularities of the orbital motion of the Moon, especially the variation. Newton lists the astronomical observations on which he relies, and establishes in a stepwise manner that the inverse square law of mutual gravitation applies to Solar System bodies, starting with the satellites of Jupite and going on by stages to show that the law is of universal application. He also gives starting at Lemma 4 and Proposition 40 the theory of the motions of comets, for which much data came from John Flamsteed and Edmond Halley, and accounts for the tides, attempting quantitative estimates of the contributions of the Sun and Moon to the tidal motions; and offers the first theory of the precession of the equinoxes. Book 3 also considers the harmonic oscillator in three dimensions, and motion in arbitrary force laws. In Book 3 Newton also made clear his heliocentric view of the Solar System, modified in a somewhat modern way, since already in the mid-1680s he recognised the "deviation of the Sun" from the centre of gravity of the Solar System. For Newton, "the common centre of gravity of the Earth, the Sun and all the Planets is to be esteem'd the Centre of the World", and that this centre "either is at rest, or moves uniformly forward in a right line". Newton rejected the second alternative after adopting the position that "the centre of the system of the world is immoveable", which "is acknowledg'd by all, while some contend that the Earth, others, that the Sun is fix'd in that centre". Newton estimated the mass ratios Sun:Jupiter and Sun:Saturn, and pointed out that these put the centre of the Sun usually a little way off the common center of gravity, but only a little, the distance at most "would scarcely amount to one diameter of the Sun".

Find pdf, epub and mobi files bellow:

You might like these:

The Philosophy of Fine Art Volume 3 by Georg Wilhelm Friedrich Hegel

Hegel develops his account of art as a mode of absolute spirit that he calls "th...

More
An Introduction to Philosphy by George Stuart Fullerton

The gift book has been made as clean and easy as possible- that no useless probl...

More
Ethics Part 2 by Benedictus de Spinoza

The second part focuses on the human mind and body. Spinoza attacks several Cart...

More